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SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH REGULAR COEFFICIENTS 
BY THE METHODS OF RICHMOND AND RUNGE-KUTTA 

ABSTRACT 

Numerical solutions of the differential equation which 
describes the electric field within an inhomogeneous layer of 
permittivity, upon which a perpendicularly-polarized plane wave is 
incident, are considered. Richmond's method and the Runge-Kutta 
method are compared for linear and exponential profiles of 
permittivities. These two approximate solutions are also compared 
with the exact solutions. 



INTRODUCTION 

The treatment of perpendicularly-polarized plane wave 
incidence on inhomogeneous dielectric or plasma layers has been 
investigated by many authors [l-31. Their efforts have been 
directed toward solving the differential equations which describe 
the electromagnetic behavior of fields within these layers. 
Solutions for continuous inhomogeneous layers require, in general, 
numerical techniques. Exact solutions for linear and exponential 
profiles are available [ 4 ] .  

Many methods have been used to solve the differential 
equations describing the fields within an inhomogeneous layer. 
Dividing the layer into a number of smaller segments and 
approximating the inhomogeneous profile by constant permittivity 
values within each segment, the multilayer boundary value problem 
is then solved. Approximate integral solutions are also available 
as are WKB asymptotic solutions where the inhomogeneous profile 
(or permittivity) gradient is small [ 5 , 4 ] .  For these solutions 
the computation time is too long or the model is too crude to 
yield accurate results. 

Practical solutions have been obtained using the Runge-Kutta 
method [ 6 ]  and a step-by-step numerical method described by 
Richmond [7]. Both solutions have been programmed on a personal 
computer and the results compared. A comparison with exact 
solutions, linear and exponential, has also been made. 

The primary purpose of this paper is to explain and 
demonstrate the Richmond and Runge-Kutta methods for solving a 
differential equation in which its parameters may or may not be 
known analytically. For definiteness, therefore, the differential 
equation which represents the electric field within a plane 
inhomogeneous layer of dielectric or plasma, upon which a 
perpendicularly-polarized plane wave has been assumed incident, 
has been considered. An efficient solution of this differential 
equation for this ideal model is needed since the same 
differential equation exists for realistic problems such as 
aperture antennas which are bounded by inhomogeneous dielectric or 
plasma layers. 
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INHOMOGENEOUS PLANE LAYER-PERPENDICULAR POLARIZATION 

A plane wave is incident on a plane inhomogeneous layer of 
dielectric or plasma as shown in figure 1. The incident electric 
field which is polarized in the x-direction propagates in free 
space (region I) at an angle 8 with the normal to the layer. The 
transmitted electric field which is also x-polarized exists into 
free space (region 111) at an angle 8.  The partial differential 
equation for the electric field in the free space regions and in 
the inhomogeneous layer is written as 

2 2 

(1) a Ex(YIZ) a Ex(Y,Z) 2 + 2 + k Cr(Z) Ex(Y,Z) = 0 
aY2 az 

where k is the free space wavenumber and cr(z) is the relative 
dielectric constant of the medium. Since the relative dielectric 
constant in free space (regions I and 111) equals one, the 
solutions of equation (1) in these regions are readily found: 

~I(y,z) = E~[ e jkzcose + 

e -j kzcose] ej kysine 

I11 j kzcose ej kysine Ex (YlZ) = Ete ( 3 )  

where Ei is the intensity of the incident electric field, R is the 
reflection coefficient at the interface, and Et is the transmitted 
electric field intensity. However, in region 11, since E (z) can 
be an arbitrary function of z, the solution of equation (1) must 
be determined numerically, except for some specialized profiles 
'such as linear and exponential. 

Before attempting the solution of equation (1) in region 11, 
it is reduced to an ordinary differential equation. This is 
readily accomplished by the method of separation of variables and 
the continuity of tangential fields throughout the media. The 
continuity requirement forces the y-variation in the fields to be 
the same as given in equations (2) and ( 3 ) .  The differential 
equation describing the z-variation of the electric field is 
written as 

r 

2 I1 

( 4 )  
2 I1 d Ex ( 2 )  

+ k2( cr(z) - sin e )Ex ( z )  = 0 
dz2 
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Richmond's Method 

One method of solving equation ( 4 )  for region I1 is reported 
in a paper by Richmond [7]. In his method a step-by-step 
numerical procedure is used to find the electric field within the 
layer at successive points. To begin the solution, the field at 
z=O and z=hl which is a small distance within the layer, must be 
determined first. The field at z=O is assumed to be unity and the 
field at z=h is found from the Maclaurin series expansion at 
z=O; i.e., 

3 
h + -  2 1  Ex(Z)1h3+ . . ( 5 )  

3 ! dz3 
d2Ex(Z) I z=o 

I1 dEx(Z) /h + 1 d22 Ex (h) = Ex(o)+ dz 
z=o z=o 

where 

Ex(O ) = 1 

= jk cose dz 
z=o 

2 

dz 

3 

2 sin e ) 
E x ( z ) I  

= - k 2 ( cC- 2 
z=o 

dz dEc 1 2 Ex(z)I = - k2[ jk ( cC- sin 8 ) cose + - 
z=o dZ3 

and cC is the complex relative permittivity at the point z= 0, and 

dz 
point z=O+. Substituting equation (6) into equation (5) yields 
- dcC is the derivative of the permittivity with respect to z at the 

Ex I1 (h) = 1 - 7 kLhL ( & + - s i n e )  2 - z  k2h3 E+' 

where E+ is the real relative permittivity, E+' is the derivative 
of the real relative permittivity with respect to z, and tang+ is 
the loss tangent. The subscript + denotes evaluation at z=O+. 

The Taylor series expansion of the electric field about the 
point z=nh is written as 
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E1'(z) = Ex I1 (nh) + dE'l(z)l dz ( z - nh) + - 1 d2E'1(z) I ( z -nh) 2 + . . .  (8) 
dz2 z=nh 

X 
z=nh 

Evaluating equation ( 8 )  at z=nh+h and z=nh-h and adding the 
result, thus giving 

E:' (nh+h) I1 r 2Ex (nh) + h2 

2 2 I1 = k ( cr(z) - sin 8 ) Ex (z) I 
z=nh z=nh dz2 

(9) 

4 I1 
Ex 4 (') I = k4(c$z)-sin2e )E:'(z) 

z=nh dz 
11' I1 - 2k cr' ( z )  Ex ( z )  - k2c;' (z) Ex (z) I (11) 

z = n h  
with 

(nh) - E:' (nh-h) I1 
1- 

11' EX E.. (nh) = A 11 

Employing the notation of Richmond, 
(10) substituted, the electric field 

2 [ 2 - k 2 2  h (cn - sin2e) ] 
En+l 

where E T  denotes equation (11). The 

equation (9), with equation 
in the layer becomes 

2 % 
+ h  12 En En-l 

- 

dielectric or plasma layer is 
divided into N segment so that Nh equals D, the thickness of the 
layer. The criteria for choosing the appropriate step size h is 
discussed in reference 7. The solution of equation (13) is 
determined in a step-by-step procedure as n varies from unity to 
N; i.e., for n=l the field at z=2h is computed from equation (13) 
since the fields at z=O and z=h are given by equations ( 6 )  and ( 7 )  
and the fourth derivative of the field at z=h is given by 
equations (10)-(12). By proceeding through the layer in this 
manner, the field at the region I and region I1 interface is 
determined. The field at this interface then enables one to 
determine the reflection coefficient. 
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Runae-Kutta Method 

The equations needed for solving second-order differential 
equations of the form 

by the Runge-Kutta method are given in reference 6. 
Equation ( 4 )  is written in this form as 

L II 
d Ex (z) = - k 2 ( Cr(Z) - sin 2 8 )Ex I1 (z) 

Using the notation adapted earlier, the electric field at a 
general point z=nh where h is the spacing within the layer is 
represented as En and at z=nh+h as En+l. From the fourth-order 
Runge-Kutta method, the solution takes the form 

= E n + h  

I I 2 1 - l k  + - k  + - k  En+l - E n + z  1 3 2 6 3 

where the primes denote the derivative with respect to z and 

k l = h f  nh E [ n) 
1 h ' h  nh + h, En+ En + g kl] 

' h  nh + h, En+ h En + 
k2) 
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with  

f ( n h ,  En] = - k2[  s ( n h )  - s i n  2 8 ) E n  

f(nh+ 1 h ' h  h,  En+ - 2 E + - 8 '11 = 

cinh+ z )  h - sin28] [ En+ h ' h  
En + kl] 

nh+ h ,  En+ h En + ' 
k2) = 

cr(nh+ h )  - sin28] [En+ h E + ' h  
k2 I J n 

I n  t h i s  procedure,  n var ies  from zero  t o  N-1. The i n i t i a l  va lues  

Eo and Eo are given by t h e  f i r s t  two equat ions  i n  equat ion  ( 6 ) .  
I 
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DISCUSSION RESULTS 

Linear and exponential profiles were chosen to demonstrate 
the Richmond and Runge-Kutta methods for solving the differential 
equations. A comparison of these methods is made. These two 
profiles were selected since they also have exact solutions as 
shown in the Appendix. 

The particular linear profile chosen is shown in figure 2. 
The relative permittivity cr begins at a value of minus one (the 
exit point) and rises to a value of two at the front interface of 
the inhomogeneous layer. The real and imaginary parts of the 
electric fields at front interface for the Richmond (equation 
(13)) and theo Runge-Kutta (equation (16)) methods are shown in 
Table I for 5 increments in the angle of incidence. Also shown 
are the complex values of the electric fields for the exact 
solutions (Airy-equation ( A - 8 ) ) .  The approximate computational 
time for each value in the Richmond method was 8 seconds compared 
to 12 seconds for the Runge-Kutta method. Both methods compare 
very favorably with the exact solutions as can be readily seen in 
Table I. 

TABLE I 

ELECTRIC FIELD DISTRIBUTION AT INTERFACE OF INHOMOGENEOUS 
LAYER-LINEAR PROFILE 

I m= 3k and b=-ll 

Angle 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

Richmond 

Real 

0.9918 
0.9954 
1.0063 
1.0243 
1.0488 
1.0794 
1.1150 
1.1550 
1.1983 
1.2435 
1.2894 
1.3345 
1.3775 
1.4166 
1.4508 
1.4788 
1.4995 
1.5124 
1.5167 

Imag 

0.9178 
0.9155 
0.9086 
0.8969 
0.8800 
0.8577 
0.8296 
0.7953 
0.7543 
0.7065 
0.6515 
0.5895 
0.5206 
0.4452 
0.3640 
0.2777 
0.1874 
0.0944 
0.0000 

Runge-Kutta 

Real 

0.9919 
0.9955 
1.0065 
1.0244 
1.0489 
1.0794 
1.1152 
1.1552 
1.1985 
1.2437 
1.2895 
1.3336 
1.3775 
1.4167 
1.4509 
1.4789 
1.4997 
1.5125 
1.5168 

Imag 

0.9179 
0.9156 
0.9086 
0.8969 
0.8800 
0.8577 
0.8296 
0.7953 
0.7543 
0.7065 
0.6516 
0.5895 
0.5206 
0.4452 
0.3640 
0.2777 
0.1874 
0.0944 
0.0000 

Exact-Airy 

Real 

0.9919 
0.9955 
1.0065 
1.0244 
1.0489 
1.0794 
1.1152 
1.1552 
1.1985 
1.2437 
1.2895 
1.3346 
1.3775 
1.4167 
1.4509 
1.4789 
1.4997 
1.5125 
1.5168 

Imag 

0.9179 
0.9156 
0.9086 
0.8969 
0.8800 
0.8577 
0.8296 
0.7953 
0.7543 
0.7065 
0.6516 
0.5895 
0.5206 
0.4452 
0.3640 
0.2777 
0.1874 
0.0944 
0.0000 

. 
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The exponential profile selected for comparison is shown in 
figure 3. The relative permittivity cr begins at a value of one 
and rises to a value of e at the front interface of the 
inhomogeneous layer. The values of the real and imaginary parts 
of the electric fields at the front interface foF the Richmond and 
Runge-Kutta methods are shown in Table I1 for 5 increments in the 
angle of incidence. Also shown are the cornplFx valuFs of the 
electric fields for two angles of incidence ( 0 and 30 ) f o r  the 
exact solution (Bessel-equation (A-17 ) ) :  these two angles were 
selected because, for the parameters used in these computations, 
they yield integer order Bessel functions which are easily 
calculable. The approximate computational time for each value in 
the Richmond method was 9 seconds compared to 12 seconds for the 
Runge-Kutta method. Both methods compare very favorably with each 
other as well as to the two exact solutions as can be readily seen 
in Table 11. 

TABLE I1 

ELECTRIC FIELD DISTRIBUTION AT INTERFACE OF INHOMOGENEOUS 
LAYER-EXPONENTIAL PROFILE 

9ngle 
0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

Richmond 

Real 
0.3736 
0.3766 
0.3851 
0.3993 
0.4187 
0.4427 
0.4711 
0.5028 
0.5372 
0.5731 
0.6096 
0.6456 
0.6798 
0.7112 
0.7385 
0.7610 
0.7776 
0.7878 
0.7912 

Imag 
0.7411 
0.7393 
0.7340 
0.7249 
0.7119 
0.6945 
0.6725 
0.6455 
0.6130 
0.5748 
0.5308 
0.4809 
0.4251 
0.3639 
0.2976 
0.2273 
0.1535 
0.0774 
0.0000 

Runge-Kutta 

Real 
0.3738 
0.3767 
0.3853 
0.3994 
0.4188 
0.4430 
0.4713 
0.5030 
0.5373 
0.5733 
0.6098 
0.6457 
0.6800 
0.7113 
0.7387 
0.7611 
0.7777 
0.7880 
0.7914 

Imag 
0.7411 
0.7393 
0.7340 
0.7249 
0.7119 
0.6945 
0.6725 
0.6455 
0.6130 
0.5749 
0.5308 
0.4809 
0.4252 
0.3640 
0.2978 
0.2273 
0.1535 
0.0774 
0.0000 

Exact-Bessel 

Real 
0.3738 

0.4722 

Imag 
0.7411 

0.6722 

Reflection coefficients at the front interface of the 
inhomogeneous layers are also of interest. The equations required 
for computing the reflection coefficients are given in reference 
7. Magnitude and phase of the reflection coefficients for the 
linear and exponential profiles discussed in this paper are shown 
in Tables I11 and IV. 
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TABLE I11 

REFLECTION COEFFICIENTS AT INTERFACE OF INHOMOGENEOUS 
LAYER-LINEAR PROFILE 

I Richmond 

I1 11 

I m= 3k and b=-1 ] 

Runge-Kutta 

Phase 
in radians 

-. 0548 
-.0480 
-.0277 
0.0030 
0.0542 
0.1159 
0.1919 
0.2828 
0.3897 
0.5127 
0.6540 
0.8154 
1.0007 
1.2139 
1.4642 
1.7644 
2.1351 
2.5981 
3.1416 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

Magnitude 

0.2929 
0.2936 
0.2957 
0.2992 
0.3043 
0.3112 
0.3201 
0.3314 
0.3457 
0.3638 
0.3870 
0.4169 
0.4564 
0.5092 
0.5811 
0.6788 
0.8048 
0.9367 
1.0000 

0.2925 
0.2932 
0.2954 
0.2991 
0.3044 
0.3116 
0.3208 
0.3324 
0.3473 
0.3659 
0.3896 
0.4202 
0.4604 
0.5137 
0.5862 
0.6840 
0.8090 
0.9384 
1.0000 

Phase 
in radians 
-.0825 
-.0757 -. 0553 
-.0211 
0.0268 
0.0889 
0.1655 
0.2571 
0.3644 
0.4885 
0.6308 
0.7934 
0.9797 
1.1946 
1.4463 
1.7485 
2.1221 
2.5901 
3.1416 
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TABLE IV 

90 11 1.0000 

REFLECTION COEFFICIENTS AT INTERFACE OF INHOMOGENEOUS 
LAYER-EXPONENTIAL PROFILE /I 

-3.1416 

Richmond II 
Magnitude 

0.2825 
0.2837 
0.2874 
0.2935 
0.3024 
0.3144 
0.3297 
0.3489 
0.3727 
0.4021 
0.4382 
0.4828 
0.5376 
0.6051 
0.6969 
0.7823 
0.8828 
0.9663 
1.0000 

Runge-Kutta 

Phase 
in radians 

-2.4801 
-2.4791 
-2.4762 
-2.4714 
-2.4651 
-2.4575 
-2.4494 
-2.4414 
-2.4345 
-2.4302 
-2.4303 
-2.4374 
-2.4553 
-2.4889 
-2.5455 
-2.6338 
-2.7631 
-2.9367 
-3.1416 

Angle 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 

I Magnitude 

0.2788 
0.2800 
0.2836 
0.2898 
0.2986 
0.3105 
0.3258 
0.3449 
0.3686 
0.3979 
0.4340 
0.4784 
0.5334 
0.6009 
0.6831 
0.7791 
0.8808 
0.9656 

Phase 
in radians 

-2.4876 
-2.4863 

-2.4780 
-2.4710 
-2.4631 
-2.4540 
-2.4450 
-2.4372 
-2.4320 
-2.4311 
-2.4373 
-2.4542 
-2.4868 
-2.5427 
-2.6306 
-2.7601 
-2.9348 

-2.4833 

. 
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CONCLUDING REMARKS 

The numerical techniques of Richmond and Runge-Kutta were 
shown to be quite efficient for solving the second-order 
differential equation which describes the field within a plane 
inhomogeneous layer of permittivity, upon which a perpendicularly- 
polarized plane wave has been assumed incident. Richmond's method 
seems to be little more efficient than the Runge-Kutta method, at 
least for the two relative permittivity profiles considered. 

Although the techniques of Richmond and Runge-Kutta were 
applied to analytical profiles, they should be equally valid for 
arbitrary relative permittivity profiles or even profiles which 
are known discretely. This is important because realistic 
relative permittivity profiles may take on almost any shape. 
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APPENDIX 

Exact solutions of equation ( 4 )  are available for only a few 
relative permittivity profiles [3,4]. A brief derivation of the 
solutions of equation ( 4 )  for linear and exponential profiles is 
given here. 

For the linear profile, the relative permittivity is assumed 
to vary as 

cr(z) = mz + b (A-1) 

where m is the slope of the profile and b is the beginning value 
of the profile ( at z=O ) .  Substituting equation (A-1) into 
equation ( 4 )  yields 

2 

dz2 
d Ex(z) 2 2 + k ( mz + b - sin 8 ) Ex(z) = 0 (A-2 1 

By making 

equation 

d2E"(V) 

the substitution 

z = M v + B  

A-2) becomes 

(A-3 1 

2 2  + { M k [ m M v + m B + b - sin28 1) Ex(v) = 0 (A-4 1 
A 

dv2 

By equating the term in braces to -v and solving for M and B, it 
is found that 

(A-5) 

where 

(A-6 1 
2 sin 8 - b 
m B =  

From equations (A-3 )  and (A-6), it follows that 
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2 
2 k 7  v = - ( mz + b- sin 8 ) [  (A-7 1 

The solutions of equation (A-5) are the two independent Airy 
functions, Ai(v) and Bi(v) [ 4 ] .  The general solution of equation 
(A-5), therefore is written as 

Ex(v) = CIAi(v) + CZBi(v) (A-8 1 

where C1 and C2 are constants. These constants are determined by 
applying the appropriate boundary conditions at z=O. The boundary 
conditions are given by the first two equations in equation (6) 
but which must be expressed in terms of the new independent v. 
The evaluation of the constants is given in matrix form as 

I 

Bi(v0) - Bi(v0) 1 

I (A-9) 1 

- Ai(v0) Ai (VO) 

where 
I I 1 ID = Ai (vo) Bi (vo) - Ai (vo) Bi (vo) 

(A-10) 

and the primes denote the derivative with respect to v. For the 
solutions in this paper m=3k and b=-1. Once the C ' s  are determined, 
the electric field at any point in the layer is computed by using 
equation ( 8 ) .  

For the exponential profile, the relative permittivity is 
assumed to vary as 

cr(z) = e sz (A-11) 

Substituting equation (A-11) into equation ( 4 )  yields 

2 

dz2 
+ k2 [ esz - sin Ex(z) = 0 

d Ex(z) 

Following the substitution given in reference 4 ,  

(A-12) 
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(A-13) 

the differential equation is now written as 

2 

dv2 

2 d Ex(v) 
dEx (v) + ( v2 - p 2 ) Ex(v) = 0 + v -  dv V 

where 

If p is zero or a positive integer, the general 
equation (A-14) becomes 

Ex(v) = B J (v) + B Y (v) 1 P  2 P  
where J (v) is the Bessel function of the first kind, P 

(A-14) 

(A-15) 

solution of 

(A-16) 

Y (v) is the P 
Bessel function of the second kind, and the B's are constants. 
Upon applying the appropriate boundary conditions at z=O, the 
matrix for the B's becomes 

where 
I I \ 

ID = J ( v o ) ~  (VO) - J ( v o ) ~  (VO) 
P P P P 

(A-17) 

(A-18) 
2k 
6 vo = - 

and the primes denote the derivative with respect to v. For the 
solutions in this paper, P=k with kD=l. Once the B's are 
determined, the electric field at any point in the layer is 
computed by using equation (16). If p is not zero or a positive 
integer, the general solution of equation (A-14) becomes 

Ex(v) = D J (v) + D J- (v) (A-19) 1 P  2 P  

where the constants D1 and D2 are determined in the manner just 
described. 
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